Riemann Surfaces

March 31, 2024

Spring 2023-24

Time

Monday 16:30 - 18:30 and Tuesday 15:00-17:00

Description

In this seminar we read about Riemann surfaces and its applications. Thanks to Prof. B Sury to provide this oppurtunity of conducting the seminar.

Schedule

Date Speaker Topic
27.03.24 Sanchayan Bhowal Introduction to Riemann surfaces
29.03.24 Aaratrick Basu Riemann-Huerwitz Formula
Gandhar Kulkarni Overview of Sheaves
01.04.24 Gandhar Kulkarni Overview of Sheaves(contd.)
Srigyan Nandi Monodromy Theorem
02.04.24 Gautham Holomorphic forms and Integration
08.04.24 Soumya Dasgupta Cech Cohomology
Animesh Renanse Exact sequence of Sheaves
10.04.24 Rahul Mazumdar Riemann Roch Theorem
Trishan Mondal Applications of Riemann Roch Theorem

References

  1. Farkas, H. M., Kra, I. (1992). Riemann surfaces (pp. 9-31). Springer New York.
  2. S. Lvovski. Principles of Complex Analysis. Moscow Lectures(6). Springer, 1st ed. edition, 2020
  3. Freitag, E. (2011). Complex analysis 2: Riemann surfaces, several complex variables, Abelian functions, higher modular functions. Springer Science & Business Media.
  4. Forster, O. (2012). Lectures on Riemann surfaces (Vol. 81). Springer Science & Business Media.
  5. Miranda, R. (1995). Algebraic curves and Riemann surfaces (Vol. 5). American Mathematical Soc..