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Spin Glass Model

Figure: Magnetic Spins in a graph with black vertices denoting -1 and
white vertices denoting +1

σ ∈ {−1, 1}n denotes the magnetic spin vector in the graph.

P(σ) ∝ exp(β
n∑

j=1

Jijσiσj)

where J: interaction matrix, β > 0: inverse temperature.
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Potts Model

Figure: Coloring with 3 colors in a graph(may not be proper)

X ∈ [q]N denotes the coloring in the graph.

P(X ) ∝ exp

β

n∑
j=1

Jij1Xi=Xj


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Tensor Potts Model

Figure: Introducing peer group interactions

X ∈ [q]n denotes the coloring in the hypergraph.

P(X ) ∝ exp

β
∑
i1,...,ip

Ji1,...,ip1Xi1
=···=Xip

+ h
N∑
i=1

1Xi=1


where, h ≥ 0: magnetic field.

Sanchayan Bhowal Tensor Curie-Weiss Potts Model



Set Up

Consider the Curie-Weiss setting where Ji1,...,ip =
1

Np−1 .

This is an exponential family with paramters
(β, h) ∈ (0,∞)× [0,∞).

Define X̄r =
1
N

∑N
i=1 1Xi=r then,

Pβ,h,N(X ) :=
1

qNZN(β, h)
exp

(
βN

q∑
r=1

X̄ p
r + NhX̄·1

)
(1.1)

Magnetization Vector, X̄N := (X̄r )
q
r=1
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Goal

Asymptotics of the maximum likelihood (ML) estimates of the
parameters β and h.

Asymptotics of the magnetization vector (X̄N).
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Large Deviation of X̄N

X̄N concentrates around global maximizers of Hβ,h:

Hβ,h(t) := β

q∑
r=1

tpr + ht1 −
q∑

r=1

tr log tr

Theorem (B.,Mukherjee (2023))

Let βN → β and hN → h. Then, under PβN ,hN ,N , the empirical
magnetization X̄N satisfies a large deviation principle with speed N
and rate function −Hβ,h + supHβ,h.
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Partitioning the Parameter Space

1 Regular: if the function Hβ,h has a unique global maximizer
m∗ and the Qm∗,β = Hess(Hβ,h) is negative definite at m∗ on
Hq := {t ∈ Rq :

∑q
r=1 tr = 0}.

2 Critical: if Hβ,h has more than one global maximizer.

3 Special: if Hβ,h has a unique global maximizer m∗ and Qm∗,β

is singular on Hq.
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Form of the maximizers

Lemma

The maximizers m are of the form
(
1+(q−1)s

q , 1−s
q , · · · , 1−s

q

)

fβ,h(s) := (q−1)k

(
1− s

q

)
+k

(
1 + (q − 1)s

q

)
+

(
1 + (q − 1)s

q

)
·h,

where k(x) = kβ,p(x) := βxp − x log x .

Special:

i. type-I, if f
(4)
β,h (s) < 0.

ii. type-II, if f
(4)
β,h (s) = 0(Not observed in Ising Model)
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Figure: Partition of the paramter space, for p=7,q=5
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Figure: Partition of the paramter space, for p=4,q=2
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CLT of X̄N under perturbation

Theorem (B.,Mukherjee(2023))

1 Regular: for X ∼ P
β+N− 1

2 β̄,h+N− 1
2 h̄,p

for some β̄, h̄ ∈ R,

N
1
2
(
X̄N −m∗

) D−→ Nq

(
Σ(β̄pmp−1

∗ + h̄e1),Σ
)
,

2 Critical:

for X ∼ Pβ,h,p, as N → ∞, we have:

X̄N
P−→

K∑
k=1

pkδmk
,

under PβN ,hN

(
·
∣∣∣X̄N ∈ B(mi , ε)

)
:

√
N
(
X̄N −mi

) D−→ Nq(Σ
′(β̄pmp−1

i + h̄e1),Σ
′),
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CLT of X̄N under perturbation

Theorem ((contd.))

3 Special: Let u =:= (1− q, 1, . . . , 1),

Type-I: Under P
β+N− 3

4 β̄,h+N− 3
4 h̄,p

, as N → ∞,

N
1
4 (X̄N −m∗)

D−→ Tβ̄,h̄u,

where Tβ̄,h̄ has density proportional to,

exp

(
x4

24
q4f

(4)
β,h(s) + (β̄p⟨mp−1

∗ ,u⟩+ h̄(1− q))x

)
.

Type-II: Under P
β+N− 5

6 β̄,h+N− 5
6 h̄,p

,

N
1
6

(
X̄N −m∗

) D−→ Fh̄u.

where Fh̄ has density proportional to exp
(
− 32

15x
6 − h̄x

)
.
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Proof Sketch

Denote WN :=
√
N
(
X̄N −m∗

)
.

g : Rq → R a bounded, continuous function .

Weak Convergence:

qNZN(βN , hN)EβN ,hN ,N

[
g(WN)1∥WN∥≤M

]
=
∑

g(w(v))1∥w(v)∥≤MqNZN(βN , hN)PβN ,hN ,N(X̄N = v)

A small lemma,

qNZN(β, h)Pβ,h,N(X̄N = v) ∼ N− q−1
2 A(v)eNHβ,h(v)

where A(v) := (2π)−(q−1)/2
∏q

r=1 v
−1/2
r .
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Proof Sketch

Taylor expand HβN ,hN to get,

qNZN(βN , hN)EβN ,hN ,N

[
g(WN)1∥WN∥≤M

]

∼A(m∗)

N
q−1
2

eNHβN ,hN
(m∗)

∑
g(w)1∥w∥≤Me⟨β̄pm

p−1
∗ +h̄e1,w⟩+ 1

2
Qm∗,β(w)

∼A(m∗)e
NHβN ,hN

(m∗)
∫
Hq

⋂
B(0,M)

g(w)e⟨β̄pm
p−1
∗ +h̄e1,w⟩+ 1

2
Qm∗,β(w).
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Proof Sketch

Hence, under PβN ,hN ,N , WN conditioned on ∥WN∥ ≤ M converges
weakly to the density proportional to

w 7→ e⟨β̄pm
p−1
∗ +h̄e1,w⟩+ 1

2
Qm∗,β(w) .

Conclude the proof by uniform integrability of {XN}.
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MLE of the parameters

We interested to esimate:

1 β with h known,

2 h with β known.
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MLE of the parameters

Define uN,p and uN,1 as,

uN,p(β, h, p) := Eβ,h,p(∥X̄N∥pp) and uN,1(β, h, p) := Eβ,h,p(X̄1) .

From classical results of exponential family the ML estimate β̂
satisfies the equation for fixed h:

uN,p(β, h, p) = ∥X̄N∥pp

and for fixed β, the ML estimate ĥ satisfies the equation:

uN,1(β, h, p) = X̄1.
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A Lemma

Lemma

uN,p(β, h) and uN,1(β, h) are increasing in β and h respectively.

Proof Sketch:
Define FN := log qNZN(β, h). Then note that ∂

∂βFN = uN,p(β, h)

and ∂
∂hFN = uN,1(β, h). From holder’s inequality FN is convex in

β, h.
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Limit Theorems of MLE

Theorem (B., Mukherjee(2023))

For regular points we have:

N
1
2

(
ĥN − h

)
D−→ N

(
0,− q2

(q − 1)2
f ′′β,h(s)

)
Proof.

Pβ,h,p

(
N

1
2

(
ĥN − h

)
≤ t
)

= Pβ,h,p

(
ĥN ≤ h +

t

N
1
2

)
= Pβ,h,p

(
uN,1

(
β, ĥN , p

)
≤ uN,1

(
β, h +

t

N
1
2

, p

))
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Limit Theorems of MLE

Proof(contd.)

= Pβ,h,p

(
X̄1 ≤ E

β,h+N− 1
2 t,p

(
X̄1

))
= Pβ,h,p

(
N

1
2
(
X̄1 −m1

)
≤ E

β,h+N− 1
2 t,p

(
N

1
2
(
X̄1 −m1

)))
→ Pβ,h,p

(
N

(
0,− (q − 1)2

q2f ′′β,h (s)

)
≤ − t(q − 1)2

q2f ′′β,h (s)

)

= Pβ,h,p

(
N

(
0,−

q2f ′′β,h (s)

(q − 1)2

)
≤ t

)
.
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Asymptotics of β̂N and ĥN

Figure: Regular: β̂N is
√
N consistent except at the red line. ĥN is

√
N

consistent
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Asymptotics of β̂N and ĥN

Figure: Strongly Critical: β̂N is
√
N consistent. ĥN is

√
N consistent
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Asymptotics of β̂N and ĥN

Figure: Weakly Critical: β̂N is
√
N inconsistent. ĥN is

√
N consistent
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Asymptotics of β̂N and ĥN

Figure: Transition Point: β̂N is
√
N inconsistent. ĥN is

√
N consistent
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Asymptotics of β̂N and ĥN

Figure: Special Point: β̂N is N3/4 consistent except for
(p, q) = (2, 2), (3, 2). ĥN is N3/4 consistent.
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Special Case of p = 4,q = 2

Figure: Special Point: β̂N is N5/6 in-consistent. ĥN is N5/6 consistent.
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Summary and Discussion

Phase transitions in the asymptotics of the magnetization
vector.

Asymptotics depend largely on the number of maximizers of a
certain function Hβ,h and (p, q).

For “almost every” points, both β̂N and ĥN are√
N-consistent and asymptotically normal.

At one point, both β̂N and ĥN can be superefficient,
converging at rate N3/4 to non-Gaussian distributions.

There exists a continuous curve in the interior of the
parameter plane, on which the MLEs have mixture
distributions. The components are normal/half-normal and
point masses.

The curious case of (p, q) = (4, 2), where ĥN can converge at
rate of N5/6 to a non-Gaussian distribution.

Sanchayan Bhowal Tensor Curie-Weiss Potts Model



Summary and Discussion

Phase transitions in the asymptotics of the magnetization
vector.

Asymptotics depend largely on the number of maximizers of a
certain function Hβ,h and (p, q).

For “almost every” points, both β̂N and ĥN are√
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Thank You!
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